Abstract

During translation, tRNAs must move rapidly to their adjacent sites in the ribosome while maintaining precise pairing with mRNA. This movement (translocation) occurs in a stepwise manner with hybrid-state intermediates, but it is unclear how these hybrid states relate to kinetically defined events of translocation. Here we analyze mutations at position 2394 of 23S rRNA in a pre-steady-state kinetic analysis of translocation. These mutations target the 50S E site and are predicted to inhibit P/E state formation. Each mutation decreases growth rate, the maximal rate of translocation (k(trans)), and the apparent affinity of EF-G for the pretranslocation complex (i.e., increases K(1/2)). The magnitude of these defects follows the trend A > G > U. Because the C2394A mutation did not decrease the rate of single-turnover GTP hydrolysis, the >20-fold increase in K(1/2) conferred by C2394A can be attributed to neither the initial binding of EF-G nor the subsequent GTP hydrolysis step. We propose that C2394A inhibits a later step, P/E state formation, to confer its effects on translocation. Replacement of the peptidyl group with an aminoacyl group, which is predicted to inhibit A/P state formation, decreases k(trans) without increasing K(1/2). These data suggest that movements of tRNA into the P/E and A/P sites are separable events. This mutational study allows tRNA movements with respect to both subunits to be integrated into a kinetic model for translocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.