Abstract

Condensation of chromatin depends upon the ion composition in the cell nucleus. We tested in isolated nuclei of Madin-Darby canine kidney cells the influence of various ions on nuclear volume (i. e. DNA packing) and intranuclear voltage. After isolation, nuclei were superfused with cytosolic solutions in which Na+, K+, Ca2+ and H+ ions were varied. With video-imaging and microelectrode techniques nuclear volume and intranuclear potential were measured in response to the various ions. In control cytosolic solution, isolated nuclei exhibited an intranuclear electrical potential of -6.5 +/- 0.5 mV (relative to a reference electrode in the cytosolic solution) corresponding to a nuclear volume of 250 +/- 10 fl (n = 104). Changing the Na+, K+ or free Ca2+ concentration in the superfusate in the physiological range resulted in minor changes of volume and intranuclear potential whereas pH altered both parameters dramatically. Nuclear swelling and intranuclear negative voltage increased with alkalinization and decreased when pH was reduced. An intact nuclear envelope was found to be no prerequisite for maintaining intranuclear negativity, indicating that the composition and functional state of nuclear chromatin rather than specific ion permeabilities of the nuclear envelope determine nuclear electrical potential. We present a model that explains nuclear volume and voltage on the basis of interaction between negatively charged DNA and positively charged histones of the nuclear chromatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.