Abstract

The intestinal glucagon-like peptides GLP-1 and GLP-2 inhibit intestinal motility, whereas GLP-2 also stimulates growth of the intestinal mucosa. However, the mechanisms of action of these peptides in the intestine remain poorly characterized. To determine the role of the enteric nervous system in the actions of GLP-1 and GLP-2 on the intestine, the glial cell line-derived neurotropic factor family receptor alpha(2) (GFRalpha2) knockout (KO) mouse was employed. The mice exhibited decreased cholinergic staining, as well as reduced mRNA transcripts for substance P-ergic excitatory motoneurons in the enteric nervous system (ENS) (P < 0.05). Examination of parameters of intestinal growth (including small and large intestinal weight and small intestinal villus height, crypt depth, and crypt cell proliferation) demonstrated no differences between wild-type and KO mice in either basal or GLP-2-stimulated mucosal growth. Nonetheless, KO mice exhibited reduced numbers of synaptophysin-positive enteroendocrine cells (P < 0.05), as well as a markedly impaired basal gastrointestinal (GI) transit rate (P < 0.05). Furthermore, acute administration of GLP-1 and GLP-2 significantly inhibited transit rates in wild-type mice (P < 0.05-0.01) but had no effect in GFRalpha2 KO mice. Despite these changes, expression of mRNA transcripts for the GLP receptors was not reduced in the ENS of KO animals, suggesting that GLP-1 and -2 modulate intestinal transit through enhancement of inhibitory input to cholinergic/substance P-ergic excitatory motoneurons. Together, these findings demonstrate a role for GFRalpha2-expressing enteric neurons in the downstream signaling of the glucagon-like peptides to inhibit GI motility, but not in intestinal growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.