Abstract

The Wahiba Sands in northeastern Oman are bordered on the north, south and west by highlands. Remote sensing data are used to characterize the region between 19–23.5°N and 56.5–60°E by mapping surface and near-surface drainage, faults and fractures and aeolian features. It is suggested that the sands were originally deposited with surface runoff from the principal wadis and fluvially reworked fault zones, which define the northeastern and southwestern margins. These fluvial processes resulted in the accumulation of the vast groundwater resources now stored there. During dry climates, wind became the principal modification regime and it began to sort and shape the sediments into the dune forms that characterize today's Wahiba region. The thickness of the sands reflects the depth of the basin in which they lie. The center of the basin is filled with the thickest sand (the High Sands) and contains the highest groundwater concentrations. Presently, aeolian reworking dominates in the Wahiba region, although the Low and the Peripheral Sands continue to experience some fluvial action from occasional, seasonal rainfall. Even though dry conditions dominate today, it is clear that similar to the Sahara of North Africa, the surface sands of the Wahiba basin are indicators of groundwater occurrence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.