Abstract

Magnetic refrigeration (MR) is potentially a high efficiency, low cost, and greenhouse gas-free refrigeration technology, and with the looming phase out of HCFC and HFC fluorocarbons refrigerants is drawing more attention as an alternative to the existing vapor compression refrigeration. MR is based on the magnetocaloric effect (MCE), which occurs due to the coupling of a magnetic sublattice with an external magnetic field. With the magnetic spin system aligned by magnetic field, the magnetic entropy changes by SM as a result of isothermal magnetization of a material. On the other hand, the sum of the lattice and electronic entropies of a solid must be changed by SM as a result of adiabatically magnetizing the material, thus resulting in an increase of the lattice vibrations and the adiabatic temperature change, ∆Tad. Both the isothermal entropy change SM and adiabatic temperature change ∆Tad are important parameters in quantifying the MCE and performance of magnetocaloric materials (MCM). In general, SM and ∆Tad are obtained using magnetization and heat capacity data and the Maxwell equations. Although Maxwell equations can be used to calculate MCE for first order magnetic transition (FOMT) materials due to the fact that the transition is not truly discontinuous, there can be some errors depending on the numerical integration method used. Thus, direct measurements of ∆Tad are both useful and required to better understand the nature of the giant magnetocaloric effect (GMCE). Moreover, the direct measurements of ∆Tad allow investigation of dynamic performance of FOMT materials experiencing repeated magnetization/demagnetization cycles. This research utilized a special test facility to directly measure MCE of Gd5Si2Ge2, Gd5Si2.7Ge1.3, MnFePAs, LaFeSiH , Ni55.2M18.6Ga26.2, Dy, Tb, DyCo2 , (Hf0.83 Ta0.17)Fe1.98,

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.