Abstract

Voltage losses (ΔVOC) are a crucial limitation for the performance of excitonic organic solar cells (OSCs) and can be estimated by two approaches─the radiative limit and the Marcus charge-transfer (MCT) model. In this work, we show that combining the radiative limit and MCT models for voltage loss calculations provides useful insights into the physics of emerging efficient OSCs. We studied nine different donor-acceptor systems, wherein the power conversion efficiency ranges from 4.4 to 14.1% and ΔVOC varies from 0.55 to 0.95 V. For these state-of-the-art devices, we calculated the ΔVOC using the radiative limit and the MCT model. Furthermore, we combined both models to derive new insights on the origin of radiative voltage losses (ΔVrad) in OSCs. We quantified the contribution in ΔVrad due to the bulk intramolecular (S1) disorder and interfacial intermolecular (CT) disorder by revisiting the spectral regions of interest for OSCs. Our findings are in agreement with the expected relationship of VOC with Urbach energy (EU), which suggests that the low EU is beneficial for reduced losses. However, unprecedentedly, we also identify a universal, almost linear relationship between the interfacial disorder (λ) and ΔVrad. We believe that these results can be exploited by the organic photovoltaic (OPV) community for the design of new molecules and a combination of donor-acceptors to further improve OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.