Abstract

Bioprosthetic heart valves fabricated from glutaraldehyde crosslinked porcine aortic valves often fail because of calcific degeneration. Calcification occurs in both cusp and aortic wall portions of bioprosthetic heart valves. The purpose of this study was to discern the role of different aortic wall components in the calcification process. Thus, we selectively extracted cells and other extracellular matrix proteins from porcine aorta using trypsin/DNase/RNase, cyanogen bromide (CNBr), and sodium hydroxide (NaOH) treatments and subdermally implanted these pretreated aortas in young rats. Total DNA and phospholipid data showed complete removal of cells by CNBr and NaOH treatments, whereas trypsin/DNase/RNase treatment was effective in removing DNA but not phospholipids. As shown by amino acid data and Masson's trichrome staining, collagen was removed in CNBr and NaOH treatments. Control fresh porcine aorta calcified significantly after 21 days of implantation (Ca 26.4 +/- 2.4 microg/mg). Removal of cells and collagen from the aorta by CNBr treatment did not lead to a statistically significant reduction in aortic calcification (Ca 20.8 +/- 3.0 microg/mg). Moreover, partial degradation of elastin fibers caused by NaOH (during extraction) and trypsin treatment (after implantation) of the aorta significantly increased elastin-oriented calcification (Ca 94.4 +/- 9.3 and 58.4 +/- 4.6 microg/mg, respectively). Our results indicate that the elastin component of the aorta may undergo independent calcification irrespective of devitalized cell-mediated calcification observed in glutaraldehyde crosslinked aortas. Our results also demonstrate the importance of studying elastin-oriented calcification in decellularized elastin-rich aortic matrices currently used in tissue-engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.