Abstract

Abstract Storage of carbon dioxide in deep formations is being actively considered for the reduction of greenhouse gas emissions. Relevant experience in the petroleum industry comes from natural gas storage and enhanced recovery using carbon dioxide, but this experience is over a time scale less than the hundreds or thousands of years required for carbon dioxide storage. On these long time scales different mechanisms need to be considered. In the long-term the dominant mechanism for dissolution of carbon dioxide in formation water is convective mixing rather than pure diffusion. This arises because the density of formation water increases upon dissolution of carbon dioxide, creating a density instability. Linear stability analysis has been used to estimate the time required for this instability to occur in anisotropic systems. For sufficiently thick formations with moderate vertical permeability, this time is years to decades. Further approximate analysis shows that the time needed for the injected gas to dissolve completely is typically much longer, of the order of hundreds to thousands of years, depending on the vertical permeability. This theoretical analysis is found to be in broad agreement with the results of fine scale reservoir simulations. Laboratory experiments on an analogous system demonstrate the same phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.