Abstract

Presence of bound pairs (excitons) in a low-temperature electron-hole plasma is accounted for by including correlation between fermions at the ladder level. Using a simplified one-dimensional model with on-site Coulomb interaction, we calculate the one-particle self-energies, chemical potential, and optical response. The results are compared to those obtained in the Born approximation, which does not account for bound pairs. In the self-consistent ladder approximation the self-energy and spectral function show a characteristic correlation peak at the exciton energy for low temperature and density. In this regime the Born approximation overestimates the chemical potential. Provided the appropriate vertex correction in the interaction with the photon is included, both ladder and Born approximations reproduce the excitonic and free pair optical absorption at low density, and the disappearance of the exciton absorption peak at larger density. However, lineshapes and energy shifts with density of the absorption and photoluminescence peaks are drastically different. In particular, the photoluminescence emission peak is much more stable in the ladder approximation. At low temperature and density a sizeable optical gain is produced in both approximations just below the excitonic peak, however this gain shows unphysical features in the Born approximation. We conclude that at low density and temperature it is fundamental to take into account the existence of bound pairs in the electron-hole plasma for the calculation of its optical and thermodynamic properties. Other approximations that fail to do so are intrinsically unphysical in this regime, and for example are not suitable to address the problem of excitonic lasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.