Abstract
Arc mode plays an important role in joint characterizations of arc welding, but it has been seldom considered in laser-arc hybrid welding. This paper investigated the role of arc mode on laser-metal active gas (MAG) arc hybrid welding of mild steel. Three arc modes were employed, which were cold metal transfer (CMT), pulsed spray arc and standard short circuiting arc. Microtexture of the joints were observed and measured via electron back scattering diffraction (EBSD) system to reveal the effect of arc mode on microstructure. Mechanical properties of the joints were evaluated by tensile and Charpy V-notch impact tests. It was found that both the stability and mechanical properties of laser-CMT hybrid welding (LCHW) is the best, while those of laser-standard short circuiting arc welding (LSHW) is the worst. OM and EBSD results showed that the fraction of acicular ferrite and high-angle grain boundaries in fusion zone decreases gradually in the sequence of LCHW, laser-pulsed spray arc welding and LSHW, while the mean grain size increases gradually. Finally, the microstructure formation mechanisms and the relationship between microstructure and mechanical properties were summarized by the loss of alloying element and the stirring effect in molten pool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.