Abstract

This study develops a Finite Element Method (FEM) model to evaluate motorcyclist helmet performance, with a focus on stress distribution in the temporal bone region and its impact on brain protection. The model includes an ISI 4151 rated helmet coupled with equivalent head foam mass. Results show that Acrylonitrile Butadiene Styrene (ABS) shells reduce cortical bone impact by 97% through lateral load distribution, while Expanded Polystyrene (EPS) foam absorbs and protects the head. The study also incorporates lateral falls on flat and hemispherical anvils to assess helmet performance in real-life scenarios. These findings contribute to improved helmet design and safety for motorcyclists, enhancing overall rider protection. The analysis highlights the importance of ABS shells in minimising impact on cortical bones and the role of EPS foam in absorbing and mitigating head injury risks. The study’s insights inform the development of advanced helmet materials and designs for enhanced safety in motorcycle riding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.