Abstract
The posterior parietal cortex of both human and non-human primates is known to play a crucial role in the early integration of visual information with somatosensory, proprioceptive and vestibular signals. However, it is not known whether in humans this region is further capable of discriminating if a stimulus poses a threat to the body. In this functional magnetic resonance imaging (fMRI) study, we tested the hypothesis that the posterior parietal cortex of humans is capable of modulating its response to the visual processing of noxious threat representation in the absence of tactile input. During fMRI, participants watched while we "stimulated" a visible rubber hand, placed over their real hand with either a sharp (painful) or a blunt (nonpainful) probe. We found that superior and inferior parietal regions (BA5/7 and BA40) increased their activity in response to observing a painful versus nonpainful stimulus. However, this effect was only evident when the rubber hand was in a spatially congruent (vs. incongruent) position with respect to the participants' own hand. In addition, areas involved in motivational-affective coding such as mid-cingulate (BA24) and anterior insula also showed such relevance-dependent modulation, whereas premotor areas known to receive multisensory information about limb position did not. We suggest these results reveal a human anatomical-functional homologue to monkey inferior parietal areas that respond to aversive stimuli by producing nocifensive muscle and limb movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.