Abstract

We review the study of rogue waves and related instabilities in optical and oceanic environments, with particular focus on recent experimental developments. In optics, we emphasize results arising from the use of real-time measurement techniques, whilst in oceanography we consider insights obtained from analysis of real-world ocean wave data and controlled experiments in wave tanks. Although significant progress in understanding rogue waves has been made based on an analogy between wave dynamics in optics and hydrodynamics, these comparisons have predominantly focused on one-dimensional nonlinear propagation scenarios. As a result, there remains significant debate about the dominant physical mechanisms driving the generation of ocean rogue waves in the complex environment of the open sea. Here, we review state-of-the-art of rogue wave studies in optics and hydrodynamics, aiming to clearly identify similarities and differences between the results obtained in the two fields. In hydrodynamics, we take care to review results that support both nonlinear and linear interpretations of ocean rogue wave formation, and in optics, we also summarise results from an emerging area of research applying the measurement techniques developed for the study of rogue waves to dissipative soliton systems. We conclude with a discussion of important future research directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.