Abstract

In this paper, we numerically show and discuss the existence and characteristics of rogue heat and diffusion waves. More specifically, we use two different nonlinear heat (diffusion) models and show that modulation instability leads to the generation of unexpected and large fluctuations in the frame of these models. These fluctuations can be named as rogue heat (diffusion) waves. We discuss the properties and statistics of such rogue waves. Our results can find many important applications in many branches such as the nonlinear heat transfer, turbulence, financial mathematics, chemical or biological diffusion, nuclear reactions, subsurface water infiltration, and pore water pressure diffusion modeled in the frame of nonlinear Terzaghi consolidation models, just to name a few.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.