Abstract
Traumatic brain injury (TBI) results in prolonged and non-resolving activation of microglia. Forced turnover of these cells during the acute phase of TBI aids recovery, but the cell-intrinsic pathways that underpin the pro-repair phenotype of these repopulating microglia remain unclear. Here, we show that selective targeting of ROCK2 with the small molecule inhibitor KD025 impairs the proliferative response of microglia after TBI as well as during genetically induced turnover of microglia. KD025 treatment abolished the substantial neuroprotective and cognitive benefits conferred by repopulating microglia, preventing these cells from replenishing the depleted niche during the early critical time window post-injury. Delaying KD025 treatment to the subacute phase of TBI allowed microglial repopulation to occur, but this did not enhance the benefits conferred by repopulating microglia. Taken together, our data indicate that ROCK2 mediates neuronal survival and microglial population dynamics after TBI, including the emergence of repopulating microglia with a pro-repair phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.