Abstract

The presence of multicollinearity in regression data is no exception in real life examples. Instead of applying ordinary regression methods, biased regression techniques such as principal component regression and ridge regression have been developed to cope with such datasets. In this paper, we consider partial least squares (PLS) regression by means of the SIMPLS algorithm. Because the SIMPLS algorithm is based on the empirical variance–covariance matrix of the data and on least squares regression, outliers have a damaging effect on the estimates. To reduce this pernicious effect of outliers, we propose to replace the empirical variance–covariance matrix in SIMPLS by a robust covariance estimator. We derive the influence function of the resulting PLS weight vectors and the regression estimates, and conclude that they will be bounded if the robust covariance estimator has a bounded influence function. Also the breakdown value is inherited from the robust estimator. We illustrate the results using the MCD estimator and the reweighted MCD estimator (RMCD) for low-dimensional datasets. Also some empirical properties are provided for a high-dimensional dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.