Abstract

From biological to technological networks, scientists and engineers must face the question of vulnerability to understand evolutionary processes or design-resilient systems. Here, we examine the vulnerability of a network of coupled dynamical units to failure or malfunction of one of its nodes. More specifically, we study the effect of additive noise that is injected at one of the network sites on the overall synchronization of the coupled dynamical systems. In the context of mean square stochastic stability, we present a mathematically principled approach to illuminate the interplay between dynamics and topology on network robustness. Through the new theoretical construct of robust metric, we uncover a complex and often counterintuitive effect of dynamics. While networks are more robust to noise injected at their hubs for a classical consensus problem, these hubs could become the most vulnerable nodes for higher order dynamics, such as second-order consensus and Rossler chaos. From the exact treatment of star networks and the systematic application of perturbation techniques, we offer a mechanistic explanation of these surprising results and lay the foundation for a theory of dynamic robustness of networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.