Abstract

A novel granular activated carbon-synergized anaerobic membrane bioreactor (GAC-AnMBR), consisted of four expanded bed anaerobic bioreactors with GAC carriers and a membrane tank, was established in pilot scale (10 m3/d) to treat real municipal wastewater (MWW) at ambient temperature seasonally fluctuating from 35 to 5 °C. It showed sound organic removal over 86% with the permeate COD less than 50 mg/L even at extremely low temperatures below 10 °C. COD mass balance analysis revealed that membrane rejection (with a contribution rate of 10%-20%) guaranteed the stable organic removal, particularly at psychrophilic temperature. The methane yield was over 0.24 L CH4 (STP)/g COD removed at mesophilic temperature and 0.21 L CH4 (STP)/g COD removed at 5–15 °C. Pyrosequencing of microbial communities suggested that lower temperature reduced the abundance of the methane producing bacteria, but the methane production was enhanced by selectively enriched Methanosaeta, syntrophic Syntrophobacter and Smithella and exoelectrogenic Geobacter for direct interspecies electron transfer (DIET) on the additive GAC. Compared with previously reported pilot-scale AnMBRs, the GAC-AnMBR in this study showed better overall performance and higher stability in a wide temperature range of 5–35 °C. The synergistic effect of GAC on AnMBR guaranteed the robustness of GAC-AnMBR against temperature, which highlighted the applicational potential of GAC-AnMBR, especially in cold and temperate climate regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.