Abstract

Distributed averaging-based integral (DAI) controllers are becoming increasingly popular in power system applications. The literature has thus far primarily focused on disturbance rejection, steady-state optimality and adaption to complex physical system models without considering uncertainties on the cyber and communication layer nor their effect on robustness and performance. In this paper, we derive sufficient delay-dependent conditions for robust stability of a secondary-frequency-DAI-controlled power system with respect to heterogeneous communication delays, link failures and packet losses. Our analysis takes into account both constant as well as fast-varying delays, and it is based on a common strictly decreasing Lyapunov–Krasovskii functional. The conditions illustrate an inherent trade-off between robustness and performance of DAI controllers. The effectiveness and tightness of our stability certificates are illustrated via a numerical example based on Kundur’s four-machine-two-area test system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.