Abstract
AbstractConsidering the unique interplay of trams with road traffic, this study explored the issue of instability in tram operations—a prominent medium-capacity rail transit. Our goal was to design a timetable slack time optimization method for scheduling slack time to improve the stability of tram operations. To facilitate this, we derived the travel/dwelling time distribution from historical data, which assisted in estimating interference times and evaluating the requisite slack time. We then developed an integer programming model to calculate both the punctuality rate and expected delay under varying travel times, enabling the creation of alternative slack time schemes. Using a unique tram operation simulation logic, we assessed the operational efficiency and reliability of these alternate schemes based on specific operational indicators. The results suggest that our novel approach to timetable optimization significantly enhances the tram’s adaptability to disruptions, directly improving the passenger experience and tram competitiveness. This work offers a robust framework for timetable optimization for semi-independent right-of-way public transportation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.