Abstract

We are developing a robotic system for an asteroid surface exploration. The system consists ofmultiplesmall size rovers, that communicate with each other over a wireless network. Since the rovers configure over a wireless mesh sensor network on an asteroid, it is possible to explore a large area on the asteroid effectively. The rovers will be equipped with a hopping mechanism for transportation, which is suitable for exploration in a micro-gravity environment like a small asteroid’s surface. However, it is difficult to control the rover’s attitude during the landing. Therefore, a cube-shaped rover was designed. As every face has two antennas respectively, the rover has a total of twelve antennas. Furthermore, as the body shape and the antenna arrangements are symmetric, irrespective of the face on top, a reliable communication state among the rovers can be established by selecting the proper antennas on the top face. Therefore, it is important to estimate which face of the rover is on top. This paper presents an attitude estimation method based on the received signal strength indicators (RSSIs) obtained when the twelve antennas communicate among each other. Since the RSSI values change depending on an attitude of the rover and the surrounding environment, a significantly large number of RSSIs were collected as a training data set in different kinds of environments similar to an asteroid; consequently, a classifier for estimating the rover attitude was trained from the data set. A few of the experimental results establish the validity and effectiveness of the proposed exploration system and attitude estimation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.