Abstract

Based on gain optimization methods, superdirective beamformers can achieve high beam directivity with small aperture array. However, the extreme sensitivity to array uncertainty is a main obstacle to engineering application. In this work, a robust gain optimization algorithm under uncertainty set constraint is proposed. Considering steering vector mismatch is the result of combined effect of various array errors, and it is a measurable indicator especially in receiving system. We apply its uncertainty as a constraint on gain optimization method, which is more intuitive in physical sense. Different from existing solutions, it makes a better tradeoff among directive gain, robustness and radiation efficiency. Experimental analysis verifies its good performance in engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.