Abstract

This paper addresses the robust stabilization problem for a class of switched linear systems affected by time-varying uncertainties with saturating actuators. The objective is to design a switching law and a state feedback control law such that the closed-loop system is asymptotically stable at the origin with a large domain of attraction. Via the multiple Lyapunov functions method, sufficient conditions for robust stabilization are derived. If some scalars parameters are selected in advance, the state feedback control law and the estimation of domain of attraction are presented by solving a convex optimization problem with LMI constraints. A numerical example is given to show the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.