Abstract

The task of multimedia event detection (MED) aims at training a set of models that can automatically detect the most event-relevant videos from large datasets. In this paper, we attempt to build a robust spatial-temporal deep neural network for large-scale video event detection. In our setting, each video follows a multiple instance assumption, where its visual segments contain both spatial and temporal properties of events. Regarding these properties, we try to implement the MED system by a two-step training phase: unsupervised recurrent video reconstruction and supervised fine-tuning. We conduct extensive experiments on the challenging TRECVID MED14 dataset, which indicate that with the consideration of both spatial and temporal information, the detection performance can be further boosted compared with the state-of-the-art MED models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.