Abstract

Medial axes and skeletons are notoriously sensitive to contour irregularities. This lack of stability is a serious problem for applications in e.g. shape analysis and recognition. In 2005, Chazal and Lieutier introduced the λ-medial axis as a new concept for computing the medial axis of a shape subject to single parameter filtering. The λ-medial axis is stable under small shape perturbations, as proved by these authors. In this article, a discrete λ-medial axis (DLMA) is introduced and compared with the recently introduced integer medial axis (GIMA). We show that DLMA provides measurably better results than GIMA, with regard to stability and sensibility to rotations. We give efficient algorithms to compute the DLMA, and we also introduce a variant of the DLMA which may be computed in linear-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.