Abstract
Signal-to-noise ratio (SNR) estimation available in the literature are designed based on the assumption of Gaussian noise models. These estimators may produce misleading results when the distribution of the noise deviates from Gaussian. This paper investigates the performance of existing SNR estimators in an additive non-Gaussian noise channel based on a Gaussian mixture model. An expectation---maximization (EM) based approach is proposed for optimum SNR estimation in the non-Gaussian noise channel. In addition, the Cramer---Rao bound is derived and used as a benchmark to assess the performance of the SNR estimators. Simulation results confirm the optimality and robustness of the proposed EM-based estimator in Gaussian and non-Gaussian noise channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.