Abstract

We propose a robust resource allocation framework to improve the physical layer security in the presence of an active eavesdropper. In the considered system, we assume that both legitimate receiver and eavesdropper are full-duplex (FD) while most works in the literature concentrate on passive eavesdroppers and half-duplex (HD) legitimate receivers. In this paper, the adversary intends to optimize its transmit and jamming signal parameters so as to minimize the secrecy data rate of the legitimate transmission. In the literature, assuming that the receiver operates in HD mode, secrecy data rate maximization problems subject to the power transmission constraint have been considered in which cooperating nodes act as jammers to confound the eavesdropper. This paper investigates an alternative solution in which we take advantage of FD capability of the receiver to send jamming signals against the eavesdroppers. The proposed self-protection scheme eliminates the need for external helpers. Moreover, we consider the channel state information uncertainty on the links between the active eavesdropper and other legitimate nodes of the network. Optimal power allocation is then obtained based on the worst-case secrecy data rate maximization, under a legitimate transmitter power constraint in the presence of the active eavesdropper. Numerical results confirm the advantage of the proposed secrecy design and in certain conditions, demonstrate substantial performance gain over the conventional approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.