Abstract

Recently, time-of-flight LiDAR using the single-photon detection approach has emerged as a potential solution for three-dimensional imaging in challenging measurement scenarios, such as over distances of many kilometres. The high sensitivity and picosecond timing resolution afforded by single-photon detection offers high-resolution depth profiling of remote, complex scenes while maintaining low power optical illumination. These properties are ideal for imaging in highly scattering environments such as through atmospheric obscurants, for example fog and smoke. In this paper we present the reconstruction of depth profiles of moving objects through high levels of obscurant equivalent to five attenuation lengths between transceiver and target at stand-off distances up to 150 m. We used a robust statistically based processing algorithm designed for the real time reconstruction of single-photon data obtained in the presence of atmospheric obscurant, including providing uncertainty estimates in the depth reconstruction. This demonstration of real-time 3D reconstruction of moving scenes points a way forward for high-resolution imaging from mobile platforms in degraded visual environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.