Abstract

Tailsitter unmanned aerial vehicles are utilized extensively nowadays since they merge advantages of both fixed-wing unmanned aerial vehicles and rotary-wing unmanned aerial vehicles. However, their attitude control suffers from unknown nonlinearities and disturbances due to the wide flight envelope. To solve the problems, a robust attitude controller based on a newly designed flying-wing tailsitter is proposed in this paper. By employing the angular acceleration feedback to compensate unmodeled dynamics, the proportional incremental nonlinear dynamic inversion control law is first developed. The proportional incremental nonlinear dynamic inversion strengthens the conventional nominal gain incremental nonlinear dynamic inversion with a proportional term to reflect the change of the angular acceleration more directly. Therefore, the tailsitter has a quicker response and performs better in suppressing model uncertainties and external disturbances. Since the angular acceleration is difficult to measure in practice, an angular acceleration estimation method is then established to provide accurate signals for the proportional incremental nonlinear dynamic inversion. The signals are derived as complementary results of model prediction method and direct differential method. Theoretical analysis and systematic simulations are conducted to corroborate the effectiveness of the developed estimation method as well as the robustness of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.