Abstract

The assessment of shear behavior in SFRC beams is a complex problem that depends on several parameters. This research aims to develop an artificial neural network (ANN) model that has six inputs nodes that represent the fiber volume (Vf), fiber factor (F), shear span to depth ratio (a/d), reinforcement ratio (ρ), effective depth (d), and concrete compressive strength (fc′) to predict shear capacity of steel fiber-reinforced concrete beams, using 241 data test gathered from previous researchers. The proposed ANN model provides a good implementation and superior accuracy for predicting shear strength compared to previous literature, with a Root Mean Square Error (RMSE) of 0.87, the average ratio (vtest/vpredicted) of 1.00, and the coefficient of variation of 22%. It was shown from parametric analysis the reinforcement ratio and shear span to depth ratio contributed the most impact on the shear strength. It can also be noticed that all parameters have a nearly linear impact on the shear strength except the shear span to depth ratio has an exponential effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.