Abstract
Currently, one of the most important challenges facing autonomous vehicles’ development due to varying driving conditions is effective path tracking while considering lateral stability. To address this issue, this study proposes the optimization of the linear quadratic regulator (LQR) control system by using the genetic algorithm (GA) to support the vehicle in following the predefined path accurately, minimizing the sideslip, and stabilizing the vehicle’s yaw rate. The dynamic system model of the vehicle is represented based on yaw rate angle, lateral speed, and vehicle sideslip angle as the variables of the state space model, with the steering angle as an input parameter. Using the GA to optimize the LQR control by tuning the weighting of the Q and R matrices led to enhancing the system response and minimizing deviation errors via a proposed cost function of GA. The simulation results were obtained using MATLAB/Simulink 2024a, with a representation of a predefined path as a Gaussian path. Under external and internal disturbances, such as road conditions, lateral wind, and actuator delay, the model demonstrates improved tracking performance and reduced sideslip angle and lateral acceleration by adjusting the longitudinal vehicle speed. This work highlights the effectiveness of robust control in addressing path planning, driving stability, and safety in autonomous vehicle systems.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have