Abstract

This paper focuses on the robust passivity synthesis problem for a class of linear time-delayed systems subject to parameter uncertainties. The time delay is assumed to be unknown, and the parameter uncertainties are allowed to appear in all matrices of the model. The aim lies in designing observer-based dynamic controller that render the closed-loop system be strongly robustly stable and strict passive for all admissible uncertainties, independently of time delay. Using a scaling parameterization approach, the problem being considered is transformed into a class of strongly stable and strictly passive control problem for a parameterized system without uncertainties. And then, the controller gain and the observer gain are obtained in terms of a linear matrix inequality. Finally, a numerical example is provided to demonstrate the validity of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.