Abstract
AbstractIn the present study the optimum design of tuned‐mass‐damper (TMD) devices used for the vibration control of high‐rise buildings subject to moderate earthquakes is developed. For these structures a large acceleration demand can produce damage in equipment and contents: therefore, the performance of TMD will be based on the capacity of reducing this structural response. In order to maximize the performance and the efficiency of the TMD strategy, the ratio between the absolute accelerations of the protected and of the unprotected systems is assumed as objective function in the optimum design.The method is carried out in a stochastic way and a stationary‐filtered stochastic process is assumed to model the seismic action. Since the main disadvantage of using a single TMD is the mistuning related to errors in the evaluation of the natural frequency of the main structure, an uncertainty is introduced for this structural parameter, which is modelled as a random variable. Uncertainties in other structural mechanical properties and in TMD are neglected. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Structural Design of Tall and Special Buildings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.