Abstract
We use incremental homogeneity, gain adaptation and incremental observability for proving new results on robust observer design for systems with noisy measurement and bounded trajectories. A state observer is designed by dominating the incrementally homogeneous nonlinearities of the observation error system with its linear approximation, while gain adaptation and incremental observability guarantee an asymptotic upper bound for the estimation error depending on the limsup of the norm of the measurement noise. A characteristic and innovative feature of this observer is the mixed low/high-gain structure in combination with saturated state estimates and dynamically tuned gains and saturation levels. The gain adaptation is implemented as the output of a stable filter using the squared norm of the measured output estimation error and the mismatch between each estimate and its saturated value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.