Abstract

Abstract. The effect of observational constraint on the ranges of uncertain physical and chemical process parameters was explored in a global aerosol–climate model. The study uses 1 million variants of the Hadley Centre General Environment Model version 3 (HadGEM3) that sample 26 sources of uncertainty, together with over 9000 monthly aggregated grid-box measurements of aerosol optical depth, PM2.5, particle number concentrations, sulfate and organic mass concentrations. Despite many compensating effects in the model, the procedure constrains the probability distributions of parameters related to secondary organic aerosol, anthropogenic SO2 emissions, residential emissions, sea spray emissions, dry deposition rates of SO2 and aerosols, new particle formation, cloud droplet pH and the diameter of primary combustion particles. Observational constraint rules out nearly 98 % of the model variants. On constraint, the ±1σ (standard deviation) range of global annual mean direct radiative forcing (RFari) is reduced by 33 % to −0.14 to −0.26 W m−2, and the 95 % credible interval (CI) is reduced by 34 % to −0.1 to −0.32 W m−2. For the global annual mean aerosol–cloud radiative forcing, RFaci, the ±1σ range is reduced by 7 % to −1.66 to −2.48 W m−2, and the 95 % CI by 6 % to −1.28 to −2.88 W m−2. The tightness of the constraint is limited by parameter cancellation effects (model equifinality) as well as the large and poorly defined “representativeness error” associated with comparing point measurements with a global model. The constraint could also be narrowed if model structural errors that prevent simultaneous agreement with different measurement types in multiple locations and seasons could be improved. For example, constraints using either sulfate or PM2.5 measurements individually result in RFari±1σ ranges that only just overlap, which shows that emergent constraints based on one measurement type may be overconfident.

Highlights

  • Global model simulations of aerosols and their climatic effects are very uncertain

  • The uncertainty in the aerosol effective radiative forcing (ERF) over the industrial period caused by aerosol processes, physical atmosphere model processes and emissions could be as large as the multi-model spread (Johnson et al, 2018; Regayre et al, 2014, 2018)

  • A total of 26 parameters related to aerosol emissions and processes were varied in a perturbed parameter ensemble and statistical emulators were used to generate a set of 1 million model variants that represent the model outputs for combinations of parameter values across the 26-dimensional uncertainty space

Read more

Summary

Introduction

Different global aerosol models have large spread in their simulations of aerosol microphysics, radiation and forcing (Mann et al, 2014; Myhre et al, 2013; Shindell et al, 2013; Tsigaridis et al, 2014) This multimodel spread can be due to different model structures, missing processes, parameter settings, algorithms or coding errors. Individual climate models are very uncertain because the values of parameters related to physical processes and emissions are often poorly defined The uncertainty in the aerosol effective radiative forcing (ERF) over the industrial period caused by aerosol processes, physical atmosphere model processes and emissions could be as large as the multi-model spread (Johnson et al, 2018; Regayre et al, 2014, 2018)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.