Abstract
This paper addresses the design of a robust nonlinear dynamic controller for a wind turbine. The turbine is equipped with a permanent magnet synchronous generator. The control problem involves tracking a suitable reference value for the turbine’s angular velocity, which corresponds to the wind speed. This issue is tackled by compensating for variations in the electrical and mechanical parameters present in the mathematical model. Additionally, the problem is approached under the assumption that wind speed cannot be directly measured, a fact verified in practical scenarios. This situation is particularly relevant for real-world applications, where only nominal parameter values are accessible and accurate wind speed measurement is challenging due to disturbances caused by the turbine or other factors, despite the use of appropriate sensors. To achieve precise tracking of the angular velocity reference, effective compensation of perturbation terms arising from parameter uncertainties and errors in wind estimation becomes crucial. To address this problem, a wind velocity estimator is employed in conjunction with high-order sliding mode parameter estimators, ensuring the turbine’s operation attains a high level of performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.