Abstract

Currently, the electrocatalytic hydrogen evolution reaction (HER) has been a key point of focus for developing sustainable hydrogen economy, but it is hampered by sluggish reaction kinetics. Despite the fact that various non-noble metal-based materials as electrocatalysts toward the HER are gaining considerable attention, noble metal-based nanomaterials (NMNs) for catalyzing the HER still have advantageous features, i.e., wide pH applicability, high intrinsic activity, and good stability. Considering a high chemical similarity to HER-benchmark Pt metals, various non-Pt NMNs with high atom utilization, super efficiency, and durability for HER catalysis are engineered through various structural/electronic tailoring strategies, which has become a significant trend in this research field. Herein, a panoramic review about recent representative efforts and progress in the design of non-Pt NMNs is presented. It first introduces the HER fundamentals and then generally describes the structural and electronic characteristics of non-Pt noble metals matching the HER. Followed on, different tuning strategies for fabricating effective non-Pt NMN catalysts, including composition optimizing by constructing alloys or novel compounds, morphological tuning via decreasing the particle size or designing unique nanostructures, and hybrid engineering as well as crystalline structure/facet controlling, are systemically summarized, with a special focus on the underlying structure–activity relationship for different catalysts. The features of pH universality and bifunctionality for these non-Pt NMN catalysts are also highlighted. At the end, existing challenges and future perspectives awaiting this emerging research field are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.