Abstract

In this paper, we improve the robustness of Machine Learning (ML) classifiers against training-time attacks by linking the risk of training data being tampered with to the redundancy in the ML model's design needed to prevent it. Our defense mechanism is directly applicable to classifiers' training data, without any knowledge of the specific ML model to be hardened. First, we compute the training data proximity to class separation surfaces, identified via a reference linear model. Each data point is associated with a risk index, which is used to partition the training set by an unsupervised technique. Then, we train a learner for each partition and combine the learners' output in an ensemble. Our method treats the protected ML classifier as a black box and is inherently robust to transfer attacks. Experiments show that, for data poisoning rates between 6 and 25 percent of the training set, our method is more robust compared to benchmarks and to a monolithic version of the model trained on the whole training set. Our results make a convincing case for adopting training set partitioning and ensemble generation as a stage of ML models' development and deployment lifecycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.