Abstract
PurposeTo design a robust attitude control system for the ascent flight phase of satellite launch vehicles (SLVs).Design/methodology/approachThe autopilot is based on generalized dynamic inversion (GDI). Dynamic constraints are prescribed in the form of differential equations that encapsulate the control objectives, and are generalized inverted using the Moore-Penrose Generalized Inverse (MPGI) based Greville formula to obtain the control law. The MPGI is modified via a dynamic scaling factor for assuring generalized inversion singularity-robust tracking control. An additional sliding mode control (SMC) loop is augmented to robustify the GDI closed-loop system against model uncertainties and external disturbances.FindingsThe robust GDI control law allows for two cooperating controllers that act on two orthogonally complement control spaces: one is the particular controller that realizes the dynamic constraints, and the other is the auxiliary controller that is affined in the null control vector, and is used to enforce global closed-loop stability.Practical implicationsOrthogonality of the particular and the auxiliary control subspaces ensures noninterference of the two control actions, and thus, it ensures that both actions work toward a unified goal. The robust control loop increases practicality of the GDI control design.Originality/valueThe first successful implementation of GDI to the SLV control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.