Abstract
Image annotation has been an active research topic in recent years. However, the state of art image annotation methods are often unsatisfactory, in this paper, we presented a novel image annotation refinement to improve the performance of automatic image annotation. Firstly, the initial pair-wise similarities of words is computed based on the co-occurrence of training sets, Then the topic relation is mined by generating the topic bag. Finally, the candidate annotations are re-ranked by embedding the refined word relation. The experiments over Corel images have shown that embedding topic relation is beneficial in image annotation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.