Abstract
This paper describes the development an analysis of robust, multi-variable H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sup> control systems for the conversion of the high-speed autonomous rotorcraft vehicle (HARVee), an experimental tilt-wing aircraft. Tilt-wing aircraft combine the high-speed cruise capabilities of a conventional airplane with the vertical takeoff and station keeping abilities of a helicopter by rotating their wings at the fuselage. Changing between cruise and hover flight modes in mid-air is referred to as the conversion process, or simply conversion. A nonlinear aerodynamic model was previously developed that captures the unique dynamics of the tilt-wing aircraft. An H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sup> design methodology was used to develop linear controllers along various operating points of a conversion trajectory. The development of these control systems was governed not only by performance specifications at each particular operating point, but also by the unique requirements of a gain-scheduled conversion control system. The performance of the resulting conversion closed-loop systems is analyzed in the frequency and time domains. Performance robustness with respect to parametric uncertainties has been studied for expected types of perturbations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.