Abstract
ABSTRACT In this paper, we study the robust H ∞ performance for discrete-time T-S fuzzy switched memristive stochastic neural networks with mixed time-varying delays and switching signal design. The neural network under consideration is subject to time-varying and norm bounded parameter uncertainties. Decomposing of the delay interval approach is employed in both the discrete delays and distributed delays. By constructing a proper Lyapunov-Krasovskii functional (LKF) with triple summation terms and using an improved summation inequality techniques. Sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to guarantee the considered discrete-time neural networks to be exponentially stable. Finally, numerical examples with simulation results are given to illustrate the effectiveness of the developed theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental & Theoretical Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.