Abstract

In this paper, the robust $$H_\infty$$ filtering problem is discussed for a class of uncertain discrete-time stochastic neural networks with Markovian jumping parameters and mixed time-delays. Norm-bounded parameter uncertainties exist in both the state and measurement equation. The neuron activation function satisfies sector-bounded condition. The aim is to design a full-order filter with a prescribed $$H_\infty$$ performance level. Delay-segment-dependent conditions are developed in terms of linear matrix inequalities (LMIs) such that the resulted filtering error systems robustly stochastically stable. Finally, example is provided to demonstrate the effectiveness and applicability of the related results are obtained in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.