Abstract

This article studies the problem of designing adaptive fault-tolerant H ∞ tracking controllers for a class of aircraft flight systems against general actuator faults and bounded perturbations. A robust adaptive state-feedback controller is constructed by a stabilising controller gain and an adaptive control gain function. Using mode-dependent Lyapunov functions, linear matrix inequality-based conditions are developed to find the controller gain such that disturbance attenuation performance is optimised. Adaptive control schemes are proposed to estimate the unknown controller parameters on-line for unparametrisable stuck faults and perturbation compensations. Based on Lyapunov stability theory, it is shown that the resulting closed-loop systems can guarantee asymptotic tracking with H ∞ performances in the presence of faults on actuators and perturbations. An application to a decoupled linearised dynamic aircraft system and its simulation results are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.