Abstract

In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments, an impedance-based adaptive reference trajectory generation scheme is used. Secondly, in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors, the backstepping sliding mode controller is combined with the adaptive reference trajectory generator. Finally, a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change. The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged; the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed; when the environment suddenly changes, the drive unit can move slowly until the robot re-contacts the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.