Abstract

This paper presents a linear robust output reference trajectory tracking controller, addressed here as a flat filtering controller (FFC), for nonlinear differentially flat systems. Here, we illustrate the controller's performance, via digital computer simulations and, also, via laboratory experiments, carried out on a single link-direct current (DC) motor driven robot manipulator undergoing a reference trajectory tracking task. The proposed linear FFC only requires the output to be regulated of the composite system and none of the internal states of the resulting third-order nonlinear system. The controller is designed on the basis of a drastic simplification of the combined single link-DC motor dynamics to a, perturbed, third-order pure integration system. This demonstrates the robustness of the proposed scheme with respect to ignored nonlinear state-dependent, endogenous, disturbances and, also, to independent unstructured exogenous disturbances inevitable in an experimental setup. Simulation and experimental results, as well as comparisons with other controllers, are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.