Abstract

In this paper, we focus on the robust fixed-time synchronization for discontinuous neural networks (NNs) with delays and hybrid couplings under uncertain disturbances, where the growth of discontinuous activation functions is governed by a quadratic polynomial. New state-feedback controllers, which include integral terms and discontinuous factors, are designed. By Lyapunov–Krasovskii functional method and inequality analysis technique, some sufficient criteria, which ensue that networks can realize the robust fixed-time synchronization, are addressed in terms of linear matrix inequalities (LMIs). Moreover, the upper bound of the settling time, which is independent on the initial values, can be determined to any desired values in advance by the configuration of parameters in the proposed control law. Finally, two examples are provided to illustrate the validity of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.