Abstract

We consider a robust switching control problem. The controller only observes the evolution of the state process, and thus uses feedback (closed-loop) switching strategies, a non standard class of switching controls introduced in this paper. The adverse player (nature) chooses open-loop controls that represent the so-called Knightian uncertainty, i.e., misspecifications of the model. The (half) game switcher versus nature is then formulated as a two-step (robust) optimization problem. We develop the stochastic Perron method in this framework, and prove that it produces a viscosity sub and supersolution to a system of Hamilton-Jacobi-Bellman (HJB) variational inequalities, which envelope the value function. Together with a comparison principle, this characterizes the value function of the game as the unique viscosity solution to the HJB equation, and shows as a byproduct the dynamic programming principle for robust feedback switching control problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.