Abstract

Feature selection is an important preprocessing step in machine learning and pattern recognition. It is also a data mining task in some real-world applications. Feature quality evaluation is a key issue when designing an algorithm for feature selection. The classification margin has been used widely to evaluate feature quality in recent years. In this study, we introduce a robust loss function, called Brownboost loss, which computes the feature quality and selects the optimal feature subsets to enhance robustness. We compute the classification loss in a feature space with hypothesis-margin and minimize the loss by optimizing the weights of features. An algorithm is developed based on gradient descent using L2-norm regularization techniques. The proposed algorithm is tested using UCI datasets and gene expression datasets, respectively. The experimental results show that the proposed algorithm is effective in improving the classification robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.