Abstract
For deriving the robust estimation by the EM (expectation maximization) algorithm for a model, which is more general than the linear model, the nonlinear Gauss Helmert (GH) model is chosen. It contains the errors-in-variables model as a special case. The nonlinear GH model is difficult to handle because of the linearization and the Gauss Newton iterations. Approximate values for the observations have to be introduced for the linearization. Robust estimates by the EM algorithm based on the variance-inflation model and the mean-shift model have been derived for the linear model in case of homoscedasticity. To derive these two EM algorithms for the GH model, different variances are introduced for the observations and the expectations of the measurements defined by the linear model are replaced by the ones of the GH model. The two robust methods are applied to fit by the GH model a polynomial surface of second degree to the measured three-dimensional coordinates of a laser scanner. This results in detecting more outliers than by the linear model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.